Sensitivity analysis in Gaussian Bayesian networks using a symbolic-numerical technique
نویسندگان
چکیده
The paper discusses the problem of sensitivity analysis in Gaussian Bayesian networks. The algebraic structure of the conditional means and variances, as rational functions involving linear and quadratic functions of the parameters, are used to simplify the sensitivity analysis. In particular the probabilities of conditional variables exceeding given values and related probabilities are analyzed. Two examples of application are used to illustrate all the concepts and methods.
منابع مشابه
Symbolic propagation and sensitivity analysis in Gaussian Bayesian networks with application to damage assessment
In this paper we show how Bayesian network models can be used to perform a sensitivity analysis using symbolic, as opposed to numeric, computations. An example of damage assessment of concrete structures of buildings is used for illustrative purposes. Initially, normal or Gaussian Bayesian network models are described together with an algorithm for numerical propagation of uncertainty in an inc...
متن کاملتخمین مکان نواحی کدکننده پروتئین در توالی عددی DNA با استفاده پنجره با طول متغیر بر مبنای منحنی سه بعدی Z
In recent years, estimation of protein-coding regions in numerical deoxyribonucleic acid (DNA) sequences using signal processing tools has been a challenging issue in bioinformatics, owing to their 3-base periodicity. Several digital signal processing (DSP) tools have been applied in order to Identify the task and concentrated on assigning numerical values to the symbolic DNA sequence, then app...
متن کاملGoal Oriented Symbolic Propagation in Bayesian Networks
The paper presents an efficient goal oriented algorithm for symbolic propagation in Bayesian networks. The proposed algorithm performs symbolic propagation using numerical methods. It first takes advantage of the independence relationships among the variables and produce a reduced graph which contains only the relevant nodes and parameters required to compute the desired propagation. Then, the ...
متن کاملBayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model
Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...
متن کاملEecient Implementation of Gaussian Processes
Neural networks and Bayesian inference provide a useful framework within which to solve regression problems. However their parameterization means that the Bayesian analysis of neural networks can be diicult. In this paper, we investigate a method for regression using Gaussian process priors which allows exact Bayesian analysis using matrix manipulations. We discuss the workings of the method in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Rel. Eng. & Sys. Safety
دوره 79 شماره
صفحات -
تاریخ انتشار 2003